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Multifractal characterization of stochastic resonance
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We use a multifractal formalism to study the effect of stochastic resonance in a noisy bistable system driven
by various input signals. To characterize the response of a stochastic bistable system we introduce a new
measure based on the calculation of a singularity spectrum for a return time sequence. We use wavelet
transform modulus maxima method for the singularity spectrum computations. It is shown that the degree of
multifractality defined as a width of singularity spectrum can be successfully used as a measure of complexity
both in the case of periodic and aperiodatochastic or chaotidnput signals. We show that in the case of
periodic driving force, singularity spectrum can change its structure qualitatively becoming monofractal in the
regime of stochastic synchronization. This fact allows us to consider the degree of multifractality as a new
measure of stochastic synchronization also. Moreover, our calculations have shown that the effect of stochastic
resonance can be catched by this measure even from a very short return time sequence. We use also the
proposed approach to characterize the noise-enhanced dynamics of a coupled stochastic neurons model.
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[. INTRODUCTION measure of SR10]. Sometime later, a fully systematic
theory for the residence-time distribution functions was de-
It is well known that noise is present inevitably in all real veloped by Choi, Fox, and Juridg1]. They showed that to
processes. The reckoning of its influence is very importantharacterize correctly SR based on the residence-time distri-
for a deeper understanding of the dynamics of real system$ution it is necessary to find the difference between the
Stochastic resonanceSR) discovered by Benzet al. and  residence-time distribution in the presence of the modulation
Nicolis et al. [1] during the study of the Ice Ages is one of and the residence-time distribution in the absence of the
the bright examples of a nontrivial noise action on a nonlin-modulation at the half-period of the external force.[ 2]
ear system. As a model of climate dynamics they proposed tthe receiver operating characteristic was used for quantitative
consider a bistable system simultaneously driven by noiseharacterization of a response of coupled overdamped non-
and a periodic signal. It was shown that tuning the noisdinear dynamic elements driven by a weak sinusoidal signal
level, an enhancement of a bistable system’s response to tleenbedded in Gaussian white noise. This approach was
periodic force becomes possible. Beginning from the latecomplemented and generalized [ib3] where SR was de-
1980s, a wealth of theoretical and experimental papers folscribed in terms of maximization of information-theoretic
lowed, extending the notion of SRor extensive reviews, distance measures between probability distributions of the
see Refs[2—4]) and discovering new applications in differ- output variable.
ent fields of sciences. There are a few different approaches to Evidently, the measures mentioned above can be used in
guantitative description of stochastic resonance dependintpe case where the input signal has a clear distinguishable
on the amplitude and character of an input signal which mayeak in its power spectrum. To characterize a response of a
be periodic, chaotic or even stochastic. Originally, the ennoisy nonlinear system on an aperiodic driving force it is
hancement of a weak periodic input signal was characterizedecessary to use other measures. In order to estimate the
by the response amplitude at the frequency of periodic sigresponse of a noisy excitabler bistable system to a weak
nal. Fauve and Hesld6] and McNamara, Wiesenfeld, and aperiodic signal Collinset al. [14] introduced the input-
Roy[6] suggested to use the signal-to-noise ré8blR) as a  output cross-correlation measures and a measure of transin-
guantitative measure of SR. Both quantities, the amplitudéormation quantifying the rate of information transfer from
and the SNR, undergo a resonance-like curve as a function stimulus to response. They showed, in particular, that the
noise intensity. Spectrum power amplification defined inrate of information transfer between system output and input
[2,7] as the ratio of periodic components in output and inputis optimized by noise and coined the term aperiodic stochas-
power spectrums demonstrates similar behavior taking &c resonance to describe this phenomenon. The coherence
maximal value at an optimal noise level. function was used ifl5] to characterize the response of a
Other measures based on the residence-time distributidmistable system to a weak stochastic input. It was calculated
were introduced for description of SR 8,9]. In this case analytically in the framework of the linear response theory
the main object of considerations is the structure of the mendLRT) that has been successfully applied to SR and related
tioned distribution that contains a series of peaks at the oddhenomen42,16).
multiples of the half-period of driving. All of them go From the practical point of view, it is very important to
through maxima as a function of the noise strefj§lhGam-  have the measures calculated from a sequence of the time
maitoni et al. introduced the area under the peak of theintervals characterizing the dynamics of an object under
residence-time distribution at the half-period of driving as astudy. Two examples of such sequences, which may be most
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popular at present, are interbeat interval time series fronHurst exponent and having the same scaling properties at all

cardiophysiology and neurons spike trains from neurodyiime intervals. The second one includes the multifractal sig-

namics. The statistical analysis of heartbeat dynamics haveals to describe the scaling properties of which it is neces-

shown that the use of approaches basing on wavelet or Hisary to use many local Hurst exponerits Holder expo-

bert transform(or their dual usghas a number of benefits in nentg quantifying the local singular behavior and local

comparison with the traditional ones such as power spectrurscaling in time series. According to the definitip25], the

and correlation analysisl7]. It allows to analyze the infor- Holder exponent(x,) of a functionf at the pointx, is the

mation stored in the Fourier phases of a signal under studgreatesth so thatf is Lipschitz atx,, i.e., there exists a

which is crucial for determination of nonlinear characteris-constantC and a polynomiaP,,(x) of ordern so that for all

tics. As was recently discovered by Ivaneval. [18], the  x in a neigborhood ok, we have

human heartbeat dynamics possesses the multifractal proper-

ties. They used the wavelet-based approach developed in | (%) — Pp(X—Xg)| < C|x—xo|".

[19-25 to the analysis of complex non-stationary time se-

ries. It has been shown that a heartbeat sequence of a healthyfact, it measures the degree of irregularityf aft the point

subject has a multifractal scaling, whereas the data from sub&. The singularity spectrur® (h) of the signal can be de-

jects with a pathological condition demonstrate a loss ofined as the function that gives for a fixéxlthe Hausdorff

multifractality. Moreover, authors demonstrated an explicitdimension of the set of pointswhere the exponerii(x) is

relation between the nonlinear featur@spresented by the equal toh.

Fourier phase interactionand the multifractality of healthy As was mentioned above, to determine the whole singu-

cardiac dynamics. The efficiency of their approach based ofarity spectrumD (h) from an experimental signal it is nec-

the time-frequency localization properties of wavelets allow-essary to use the approach based on the wavelet transform

ing to analyze the non-stationarities in time series. (WT), which permits an analysis both in physical space and
It is reasonable to try to use the same approach for th& scale space. The WT of the functids defined as

guantitative characterization of SR when a sequence under

study is defeated by the concerted action of an external sig-

nal and of a random force. In this case, an input sigpat Ty(b.a)= aJ_m 4

riodic or aperiodi¢ is the source of non-stationarity in a re-

sponse which can be analyzed by means of the waveleyvhere,/, is the analyzing wavelege R™ is a scale param-

based algorithm mentioned above. From this point of view, itater andbc R is a space parameter. The analyzing wavelet

is naturally to expect that the use of the multifractal formal-;g generally chosen to be well localized in both space and

ism will allow us to introduce a new universal measure quanfrequency domain. A class of widely used real-valued ana-

tifying SR for an arbitrary external signal. ~lyzing wavelets which satisfies the above condition is given
The main goal of the present study is the description ok the Gaussian function and its derivatives. As was proven

SR from the multifractal analysis point of view. Basically, by Mallat and Hwang21] the WT modulus maxim&ocal

we treat as a mpdel a blsta_ble sys'tem smultaneously drivegaxima Of|-|—¢(x,a)| at a given scala) detect all the sin-

by the white noise and an input signal. To characterize thgyjarities of a signal under study. The skeleton from the

scaling properties of a return time sequence we use a Spefyodulus maxima lines contains all the information about the

trum of local Hdder exponents calculated by means of thepjgrarchical distribution of singularities in the signal. The

wavelet transform modulus-maxim@®TMM) method. For  \yTMM method consists in taking advantage of the space-

this purpose, we first give some necessary definitions angdqaje partitioning given by this skeleton to define a partition

illustrate the procedure of singularity spectrum calculation ing,nction which scales, in the lima—0", in the following
Sec. Il. Section Il deals with the multifractal analysis of the way [20,23,24:

stochastic bistable system response for different kinds of in-

put signals. In this section, we introduce a new measure for

quantitative description of SR and stochastic synchroniza- Z(g,a)= X, T (xi(a),a)[9~a"®, 2
tion. We also test its ability to catch SR for different lengths (@)

of a return time sequence. In Sec. IV we apply mentlone%vd”lere{xi(a)}i are the WT modulus maxima ange R. Ac-

approach to the study of aperiodic stochastic resonance an rding to the theorem proved [&4], D(h), the singularity

R . . 0
coherence resonance in an unidirectionally coupled neurons S .
model. In Sec. V we summarize our results andpdiscuss thgpectrum of the functiof is obtained by Legendre transfor-

advantages of our measure in comparison with traditionarlnatlon of the functionr(q) defined in(2)
measures.

+ oo

Xx—b

f(x)dx, (1)

D(h)=min(gh—7(q)).
q
Il. SINGULARITY SPECTRUM AND WAVELET-

TRANSFORM MODULUS-MAXIMA METHOD The variablesh and D (h) play the same role as the energy

and entropy in the thermodynamics, whereas instead of the
It is well known that stochastic signals can be condition-inverse of temperature and free energy we haqaad 7(q)
ally divided into two different classes. The first one includes[23,25. From a numerical point of view, it is more conve-
the homogeneous signals characterizing by a single globaliently to calculate at first the scaling exponents:
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FIG. 1. (a) The path of a Brownian particléh) the modulus-maxima skeleton of the random signal picturg@in(c) the dependence
7(q); (d) the singularity spectrum. The first derivative of the Gaussian function was used as the analyzing wavelet.

_ 1 - clearly the homogeneous scaling for the ordinary Brownian
h(g)=lim na > Tyaxi(a),a)n|T,(x(a),a)| motion. For more detailed information about calculation’s
a—0 {xi(@)}; it Lt
procedure and additional references on freely distributed
and software, se¢26].

IIl. MULTIFRACTAL APPROACH TO STOCHASTIC

> Tuax(a),a)inT,aq;x(a),a), RESONANCE

oh — lim —
(h(g))=lim Ina @),

—0 H H
: We treat for our study the overdamped bistable oscillator

~ which i verned in canonical uni he followin
where T ,(axi(a),a) =|Ty(x @) Y2, Ty(x @)% Fur- GO0t & governed It ec(j‘u peivsete 2] by the following
thermore, we extract the set of lder exponents and corre-
sponding singularity spectrurd(h) from log-log plots of X=X— X3+ \/ﬁg(t)+y(t), (3)
h(g) andD(h(a)) [22].

As a simple example, we calculatedq) andD(h) for  where&(t) is the white Gaussian noise with the correlation
the ordinary Brownian motion which is characterized by thefunction (£(t)£(t')) = 8(t—t’) and(&(t))=0, y(t) is an in-

single global Hurst’'s exponerd =1/2. Fig. 1 demonstrates put signal.
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In the following subsections, we present the results ofit is natural to consider the degree of multifractalyde-
numerical simulations of Eq3) for different kinds of input  fined as the difference between the maximal and minimal
signal. To characterize SR from the multifractal formalismHolder exponents belonging to the one and the same singu-
point of view we will process the sequences of the returnarity spectrum as a new measure for SR and stochastic syn-
times to the one of the potential wellg] normalized on a  chronization. As clearly seen from Fig. 3, the dependence of

characteristic time scale of an external driving force. B on the noise intensity is characterized by the presence of a
minimum both for weak and for sufficiently strong input
A. Periodic input signal signals. In the regime of stochastic synchronizatmrequals

Let us start from the more simple and well studied case o[o Zero that_ correspond_s to a single poi_nt singularity spec-
periodic external driving wheg(t) = A sin(Qt+ ¢). The am- rum [sge Fig. 2d)]. In this case, the _scallng featqres of the
pdeturn time sequence under study is characterized by the

plitude of the input signal is assumed to be small, i.e., t e(in | ling exponent that d by the linearization of
signal alone cannot switch the system from one state to ar‘g— gie scaling expone at caused by he finearization o

other in the absence of noise. For the low-frequency periodi Egere?ptcr)]?ﬁ] tg]rat(r:]teizo;egrler?ﬁeg:] 3‘;#32'2?;:&’23;;02?2%;
modulation considered in this paper, this means ’ P

is suppressed in synchronous regime, because the switchings

2 in the system(3) are in phase with the input signal. The
sAj=——2. (4) mode corresponding to the periodic input signal dominates
3V3 and suppresses all others. In turn, it leads to simplification of

the singularity spectrum that reflects the absence of interac-
As is well known, the study of SR can be conditionally sepa-tions between Fourier phases in response. It is necessary to
rated on the two cases. The first one deals with the situatioamphasize here, that we understand stochastic synchroniza-
of a weak input signal when the amplitude of periodic driv-tion as instantaneous matching of the input/output phases
ing is very small in comparison with a potential barrier andwhich is observed in a finite region on the parameter plane
can be considered in the framework of the LRB,16]. The  “noise intensity—amplitude of periodic force.” Tradition-
second one is beyond the limits of LRT and corresponds tally, synchronization in noisy nonlinear oscillatory systems
an amplitude of a subthreshold input signal comparable withs estimated quantitatively by means of effective diffusion
a barrier. In the last case, the dynamics of a bistable systewpnstant which characterizes a velocity of spreading of an
is characterized by a high degree of coherence between theitial phase difference distributiof82]. Recently, this clas-
switching process and input sign@7]. It can be correctly sical approach to synchronization was successfully used for
described in terms of the phase synchronization theory bothjuantitative description of the noise-enhanced phase coher-
for periodic[28], chaotic[29], and stochastic input signals ence which takes place in stochastic bistable system driven
[30]. Moreover, as was shown [81], SR takes the form of by a subthreshold external sign28—3Q. The effective dif-
the noise-induced order in this case. Such informationfusion constant demonstrates a minimum decreasing up to a
theoretical measures as the source entropy and the dynamicedry small value in the region of synchronization. The above
entropy display a minimum at an optimal noise intensity. Inintroduced wavelet-based measure demonstrates exactly the
order to describe quantitatively these different situationssame behavior taking the zero value in the phase-locking
from the multifractal formalism point of view, we calculated regime that allows us to consider it as the measure of sto-
singularity spectrums for different values of the driving am-chastic synchronization as well. Usirgas the measure of
plitude taking as the signal under study a sequence of thstochastic synchronization, it is possible to construct the re-
return times normalized on the driving period. Each se-gion of synchronization on the parameter plane “noise
quence contained 10000 points. The results of calculationmitensity—amplitude of periodic force(see Fig. 4. Inside of
have shown the following. Singularity spectrum of the re-this region singularity spectrum of the response remains
sponse has a bell shape form both in the presence and in theonofractal that once more time demonstrates the simplifi-
absence of the external periodic driving. That caused by aation of the response in the regime of synchronization. Syn-
nonlinearity of the bistable system’s response to the externalhronization region has a tongue-like form and nearly coin-
driving force which manifests itself in the presence of thecides with the similar one constructed by means of the
different modes and in their interaction. As seen from Fig. 2 effective diffusion constant used ii28—-30. It should be
the tuning of noise level in the system of E§) leads to the noted that the degree of multifractality does not relate di-
changes in singularity spectrum both for weak and for strongectly with effective diffusion constant. The multifractal ap-
enough driving signals. The width of the singularity spec-proach based on the analysis of the scaling features of the
trum takes its minimal value for an optimal noise intensity. Ittemporal sequence, whereas the effective diffusion constant
remains finite in the case of a weak periodic driving force,is the value characterizing a probability distribution of the
whereas in the regime of stochastic synchronization singulainput/output instantaneous phase difference. Our numerical
ity spectrum qualitatively changes its form shrinking to astudies also have shown thdtdemonstrates a monotonous
single point. The return times fluctuate around the drivingdependence on the driving frequency.
period in the regime of noise-enhanced phase locking and The length of the analyzed signals becomes the important
large bursts are seldom hapdétig. 2(c)], while for the val-  parameter if they obtained in real experiments with live ob-
ues of noise intensities lying outside of synchronization rejects. Evidently, to estimate the possibility to use the above
gion the respectively large fluctuations domingfey. 2(e)]. proposed measure in real situations, we need to test its ability
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FIG. 2. (&) D(h) in the case of the weak periodic input sigeF 0.081() =0.004 for different values of noise intensi®y, (b) 7(q)
corresponding to the singularity spectrurbgh), in (a) for different values of noise intensity; the sequences of the return times normalized
on the external force period and corresponding singularity spectrums in the cAse286()=0.004 forQ=0.040[(c) and (d)] and
Q=0.012[(e) and(f)]; The Gaussian function was used as the analyzing wavelet.

to catch SR for different lengths of the return time se- Thus, the width of singularity spectrum manifests itself as
guences. The results of our computations have been showhe general and universal characteristic for description of SR,
that the degree of multifractality takes the possibility to ob-because it works very well in a wide range of values of the
serve SR both for long and for sufficiently short return timedriving amplitude and frequency. Its calculation allows us to
sequences. As seen from Fig./® calculated over the short get the information about the scaling properties of the fre-
return time sequences containing only 1000 points demonguency fluctuations of a nonlinear system response and
strates nearly the same behavior as in the case of the lordpesn’t requires any information about input signal. More-
sequences. over, that new characteristic allows one to analyze effec-
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angles, A=0.152(diamonds, A= 0.268(circles. The frequency of FIG. 5. Degree of multifractality vs noise intensity calculated

external force has the same value as in Fig. 2. The Gaussian funI:Qr indicated values of the length of the return time sequence. The
tion was used as the analyzing wavelet amplitude and frequency of the driving force awe=0.12,

0 =0.004.

tively a response even in the case of short return time se-
quences that has an especial meaning for possible B. Stochastic input signal
appllcatlons: _ _ From the practical application point of view, it is more
The obtained results are in a good agreement with théyteresting the situation when an input signal has a complex
behavior of the spectral power amplificationfirstly used  gstrycture. SR for the input signals with fluctuating amplitude
for quantitative characterization of SR [,7]. It demon-  5nd phase was considered[B8,34. In order to model the
strates a maximum the absolute value of which is increasegityation when the external signal is close to periodic one,
with the decrease of the input driving amplitudee Fig. 6. pyt has a finite width of the spectral line Neiman and
The values of noise intensity maximizing nearly coincide Schimansky-Geief34] proposed to consider the harmonic
with the ones minimizing the degree of multifractality. The ngise as the input signal. Using the cumulant analysis and
growth of the driving amplitude leads to the shift of minimal computer simulations they showed that the effect of SR takes
values ofp to lower noise level as well as for spectral power pjace for harmonic noise as well and the width of the spectral
amplification. line of the input signal at the output power spectrum can be
decreased via SR.
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means of effective diffusion constafutashed lingand of multifrac- FIG. 6. Spectral power amplification vs noise intensity for dif-
tality degree(solid ling). Driving frequency isQ0=0.004. The ferent values of the driving amplitude. Driving frequency is
Gaussian function was used as the analyzing wavelet. =0.004.
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Harmonic noisey(t) is defined by the following two-
dimensional SDE33,34:

y=s, s=-Is—0%+2eT¢(1), (5)
where ((t) is the zero-mean Gaussian noise with

(L(t)L(t))=8(t—t"). It is necessary to note, that Gaussian
noise{(t) is statistically independent from the noigé) in
(3). Equation(5) determines the two-dimensional Ornstein-
Uhlenbek procesg(t),s(t) with the power spectrum

I'e
w21‘*2+(w2_02)2

Syy(w)= , (6)

which for Q?>T2/4 has a peak at the frequenay,

=/Q?=T?/2 with the width

AQ= \/w§+rwl— \/wﬁ—rwl,

()

where w;=Q?-T?/4. The mean square displacements
(y?)=¢lQ?(s?y=¢,(ys)=0. The increase of the parameter
I' causes the widening of the spectral lif&4]. We used
harmonic noise as the input signal (8) to carry out the
multifractal analysis of SR in the case of aperiodic driving
force. As in the previous subsection, we analyzed the retur

time sequences containing the same amount of points as be-

fore and normalized on the peridb=2=/{). To compare

our results with those obtained previously, we choose the

same values of parameters for numerical simulations as i
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stochastic synchronization for the case of chaotic driving signal
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close value of the noise intensity. The decreasé afi (5)
leads to the regularization of the input signal that makes the
minimum in B(D) more pronounced.

C. Chaaotic input signal

Now, let us take as the input signal 8) the slowly
varying subthreshold chaotic signal generated by the Lorenz
system which is governed by the following ordinary differ-
ential equations:

)./1: 10(y,—y1) v,
n

Y2=(28y1—Yo—Y1Ya) v, (€))

Y3:(y1YZ_8/3Y3)V,
n

[34]. The results of our computations are presented in Fig. Awhere v is the small rationing constant slowing chaotic os-

The difference between the maximal and minimalldéo
exponents takes its minimal value for an optimal noise inten

cillations. Lorenz attractor existing in the phase space of this
system has a thin multifractal structy®5]. The power spec-

sity as in the case of periodic driving. The obtained resultdrum of chaotic oscillations calculated fgg ~variables does

are in good agreement with the resultd ®#]. The degree of

not contain any sharp peaks in this case. The input signal has

multifractality behaves as the relative width of the outputa form of random process of switchings between two meta-
spectral line used if34] demonstrating the minimum at a stable statefsee Fig. 8)]. It is reasonable to calculate the
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3 /f The Gaussian function was used as the analyzing wavelet.
o050 f R :
Q / 5 causes the coincidence gfwith the multifractality degree of
J ' the external chaotic signal in some finite range of noise
A . o
025 | ,/ ¥\ | intensities.
4 A
]
f ; \‘ IV. MULTIFRACTAL ANALYSIS OF NEURON
oo f— b , b e SPIKE TRAINS
2020 -0.10 0}9’0 0.10 0.20

One of the reason for unremitting interest in SR is the
FIG. 9. Singul_arit_y spectra for different values of noise intensity possibility to model on its base different cooperative effects
Q and of the rationing constanta) k=0.01, (b) k=0.0188. The  anq the process of the information transfer in various bio-
Gaussian function was used as the analyzing wavelet. logical sensory systems operating in natural noisy environ-
ment. At present, there are a lot of experimental results
return time sequences for the input and output signals anshowing that sensory neurons of different live organisms are
then to try to estimate the distortion of the signal in stochasable to demonstrate SR,36]. In order to estimate the en-
tic resonator using singularity spectrum. We used the varihancement of a response, the signal-to-noise ratio or differ-
ablek-y,(t) from the system of E(8) as the input signal in  €nt cr_oss-cor_relation measures are usua_llly U8édL4. It is
our simulations, herk is a small positive rationing constant. Very interesting to use the above multifractal approach to
As follows from the results presented in Figa singularity analyze the spike trains generated by a stochastic neuronal

; ; del.
spectrums of the input and output signals become more clod8° )
to each other for some optimal noise level. Moreover, for We took as a model the Fitzhugh-Nagumo sys{&

some values of the parametkrthe noise-enhanced phase pperating i.” excitable regime and driven by_ a m?xture pf the
coherence between chaotic signal and response is observ'tgéemal noise and a subthreshold stochastic spike train gen-

[29]. In this case, the switchings in the input signal are inerated by another similar system detuned from the first one

. - ) S on a control parameter. The unidirectionally coupled neuron
phase W'Fh the §W|tch|ngs In StOChaS.t'C blst.able systeee systems are described by the following stochastic differential
Fig. 8). Singularity spectrums of the input signal and of theequationS'
response are coincideee Fig. ®)] in the regime of phase ' 3
locking that means the passing of chaotic signal through the o =X — X1
stochastic resonator without any distortions. This is also il- P =X Y
lustrated by the dependence of the singularity spectrum’s )
width on the noise intensity for bistable system response that y1=Xgtas+kxo+ V2Q41&(t), 9)

is presented in Fig. 10. For some optimal noise intengity, 3

takes its minimal value closing to the value corresponding to - X2

the width of the input signal’s singularity spectrum. As was KX =Xa™ 3 Y2
mentioned above, the input and output singularity spectrums )

coincide in the regime of stochastic synchronization that Yo=Xp+as+2Q5&5(1),
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0.40 . . Indeed, in the case of sufficiently large noise intensity neu-
ron already cannot distinguish the structure of the noisy input
signal. It operates as an oscillator whose time scale is con-
trolled by noise. For some optimal value of the internal noise
intensity Q, oscillations of the first neuron become close to
the periodic one that is the essence of coherence resonance
[39]. At the moment when coherence resonance is observed
B takes its second deeper minimum reflecting the noise-
enhanced ordering of ISI.

0.35
0.30
0.25

7

S 0.20

o
0.15

V. CONCLUSIONS
0.10

We have studied the phenomenon of stochastic resonance
in terms of the multifractal formalism revisited with wavelets

0.05 1 I [25]. We observed that for some optimal noise intensity the
degree of multifractality of the response, defined as a width

009, 10° 10~ 10° 102 70 of the singularity spectrum, takes its minimal value. More-
0 over, the qualitative change of its structure takes place in the

1 regime of stochastic synchronization. In the region of the

FIG. 11. Degree of multifractality of the first neuron response innoise-enhanced phase locking it shrinks to the single point
Eq. (9 vs internal noise intensity,. Parametersu=0.01,a,  with zero Hdder exponent. We have shown that the width of
=1.05,a,=1.07,Q,=0.02,k=0.025. The width of the input sig- the singularity spectrum calculated over the return time se-
nal singularity spectrum is labeled by the dashed line. The Gaussiaguence can be effectively used as the measure characterizing
function was used as the analyzing wavelet. the response of a noisy nonlinear system in a wide range of

the driving amplitudes and frequencies. As follows from our
wherea, (Q;) anda, (Q,) are, respectively, the control numerical results, this measure can be successfully used both
parametergnoise intensitiesof the subsystemsx(,y;) and  for periodic and aperiodi¢stochastic or chaotjariving sig-
(X2,Y2), &1, andé, are the statistically independent Gaussiannals. Moreover, it has allowed us to estimate the degree of
white noise with the zero meak,is a small rationing con- coherence for the unidirectionally coupled stochastic neurons
stant as before and<1 is a small parameter allowing one model operating in excitable regime. By using the introduced
to separate all motions in the fast and slow ones. The valuameasure, we successfully diagnose both aperiodic stochastic
of control parameters and noise intensities in subsystems aresonance and coherence resonance which take place in the
different and varied independently from each other. Thus wenodel under study for the small and large noise intensities,
can consider the system of E(R) as a model of a single respectively.
neuron embedded in a network and driven by both the inter- The proposed approach has a number of benefits in com-
nal noise and summed output of the neighboring neurons thgtarison with the traditionally used measures such as SNR,
can be modeled as a stochastic spike train. Interspike inteBPA, residence time distributions, coherence function and
vals (ISI) widely used in neuroscience as the typical neurorothers. These measures use the averaging procedure for their
signals will play the role of signals under study in our con-calculation that leads to the loss of information about non-
sideration. The input stochastic spike train generated by thknear interaction between Fourier phases in response. This
second neuron is characterized by a continuous singularitynformation is very important both for deeper understanding
spectrum having a finite width as well as the chaotic inputof the essence of SR and for more sensitive diagnostic of SR
signal from the Lorenz system. The calculated widths of then full-scale experiments. The multifractal formalism based
singularity spectrum for the ISI generated by the first neuroron wavelet calculations allows one to study the scaling fea-
are shown in Fig. 11. It can be seen that the dependenge of tures of frequency fluctuations of the response. It catches all
on the internal noise intensity is characterized by two differ-even weak nonstationarities in a return times sequence under
ent minimums corresponding to two different effects takingstudy that makes it a very powerful tool for diagnostic of SR
place in the systeni9) for small and large internal noise and stochastic synchronization. The introduced measure
level, respectively. The first minimum appearing at the com-demonstrates the behavior which in a very good agreement
paratively small noise intensity corresponds to the effect ofvith the behavior of traditional quantitative characteristics of
aperiodic stochastic resonance when a weak internal noisgR. It is universal in relation to the kind of the input signal
enhances the response of the neuron model optimizing thend able to catch noise-induced effects, even from very short
transmission of the input signal. As clearly seen from Fig.time series. Later has the special importance for the analysis
11, the width of singularity spectrum calculated on the firstof real signals.
neuron ISl is very close to the input one for some optimal The presented approach to the study of scaling features of
values of noise level. Further increase of noise intensitymotion in stochastic systems may be very fruitful also in the
makes singularity spectrum of response more narrow thatase of the Brownian motion in periodic potential under the
can be considered as a manifestation of stochastic resonanaetion of random forces. It will be the task of our future
without input signa[38] called coherence resonancd 89]. investigations.

041105-9



ALEXANDER SILCHENKO AND CHIN-KUN HU PHYSICAL REVIEW E 63 041105

ACKNOWLEDGMENTS Wave[40]. This work was supported in part by the National
Science Council of the Republic of Chif@aiwan under

All the computations of singularity spectra in this papert(_:ontract No. NSC 89-2112-M-001-005.

have been made using free GNU-licensed software Las

[1] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. 14, 1453 [21] S. Mallat and W. L. Hwang, IEEE Trans. Inf. Theo8g, 617
(1981); R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Tellus (1992.
34, 10(1982; C. Nicolis and G. Nicolisjbid. 33, 225(1981); [22] J. F. Muzy, E. Bacry, and A. Armelo, Phys. Rev. Lett67,

C. Nicolis, ibid. 34, 1 (1982. 3515(199)).
[2] P. Jung, Phys. Re234, 175(1993. [23] J. F. Muzy, E. Bacry, and A. Afglo, Phys. Rev. B7, 875
[3] L. Gammaitoni, P. Haggi, P. Jung, and F. Marchesoni, Rev. (1993.

Mod. Phys.70, 223(1998. [24] E. Bacry, J. F. Muzy, and A. Armelo, J. Stat. Phy</0, 635

[4] V. S. Anishchenko, A. Neiman, F. Moss, and L. Schimansky- (1993.
Geier, Usp. Fiz. Nauki69, 7 (1999 [Sov. Phys. Usp42, 7 [25] J. F. Muzy, E. Bacry, and A. Afmelo, Int. J. Bifurcation

(1999]. Chaos Appl. Sci. Eng4, 245(1994.
[5] S. Fauve and F. Heslot, Phys. LEGTA, 5 (1983. [26] S. Mallat, A Wavelet Tour of Signaling Processiticademic
[6] B. McNamara, K. Wiesenfeld, and R. Roy, Phys. Rev. Lett. Press, San Diego, 1998

60, 2626(1988. [27] B. Shulgin, A. Neiman, and V. Anishchenko, Phys. Rev. Lett.
[7] P. Jung and P. Hagi, Phys. Rev. A4, 8032(1991). 75, 4157(1995.
[8] L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and S[28] A. Neiman, A. Silchenko, V. Anishchenko, and L.

Santucci, Phys. Rev. Let62, 349(1989. Schimansky-Geier, Phys. Rev. 3B, 7118(1998; V. S. An-
[9] T. Zhou, F. Moss, and P. Jung, Phys. ReW2 3161(1990. ishchenko, A. B. Neiman, A. N. Silchenko, and I. A. Kho-
[10] L. Gammaitoni, F. Marchesoni, and S. Santucci, Phys. Rev. vanov, Dynam. Stabil. Sysi4, 211(1999.

Lett. 74, 1052(1995. [29] A. Silchenko, T. Kapitaniak, and V. Anishchenko, Phys. Rev.
[11] M. H. Choi, R. F. Fox, and P. Jung, Phys. Rev5E 6335 E 59, 1593(1999.

(1998. [30] A. Neiman, L. Schimansky-Geier, F. Moss, B. Shulgin, and J.
[12] M. E. Inchiosa and A. R. Bulsara, Phys. Rev.5B R2021 J. Collins, Phys. Rev. B0, 284(1999.

(1996. [31] A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L.
[13] J. W. C. Robinson, D. E. Asraf, A. R. Bulsara, and M. E. Schimansky-Geier, and J. Freund, Phys. Rev. L#8t.4299

Inchiosa, Phys. Rev. Let81, 2850(1998. (1996.
[14] J. J. Collins, C. C. Chow, and T. T. Imhoff, Phys. Rev5& [32] R. L. Stratonovich,Topics in the Theory of Random Noise

R3321(1995; J. J. Collins, C. C. Chow, A. C. Capela, and T. (Gordon and Breach, New York, 196%ol. 2.

T. Imhoff, ibid. 54, 5575(1996); C. Heneghan, C. C. Chow, J. [33] L. Schimansky-Geier and Ch. Heke, Z. Phys. B79, 451

J. Collins, T. T. Imhoff, S. B. Lowen, and M. C. Teiclnid. (1990.

54, R2228(1996. [34] A. Neiman and L. Schimansky-Geier, Phys. Rev. L&®,
[15] A. Neiman, L. Schimansky-Geier, and F. Moss, Phys. Rev. E 2988(1994).

56, R9 (1997. [35] K. O. Wiklund and J. N. Elgin, Phys. Rev. 5, 1111(1996.
[16] M. I. Dykman, R. Mannella, P. V. E. McClintock, and N. G. [36] J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, Na-

Stocks, Phys. Rev. Let65, 2606(1990. ture (London 365, 337(1993; J. J. Collins, T. T. Imhoff, and
[17] P. Ch. Ivanov, M. G. Rosenblum, C.-K. Peng, J. Mietus, S. P. Grigg, J. Neurophysiolf6, 642 (1996; P. E. Greenwood,

Havlin, H. E. Stanley, and A. L. Goldberger, Natuteondon L. M. Ward, D. F. Russell, A. Neiman, and F. Moss, Phys.

383 323(1996. Rev. Lett.84, 4773(2000.
[18] P. Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, [37] M. C. Cross and P. C. Hohenberg, Rev. Mod. PI85.851

M. G. Rosenblum, Z. Struzik, and H. E. Stanley, Nat(iren- (1993.

don) 399, 461(1999. [38] Hu Gang, T. Ditzinger, C. Z. Ning, and H. Haken, Phys. Rev.
[19] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, |. Procaccia, and Lett. 71, 807 (1993.

B. I. Shraiman, Phys. Rev. 83, 1141(1986. [39] A. S. Pikovsky and J. Kurths, Phys. Rev. L&t8, 775(1997).
[20] A. Arnéodo, G. Grasseau, and M. Holschneider, Phys. Rev[40] LastWave  software freely available at  http:/

Lett. 61, 2281(1988. wave.cmap.polytechnique.fr/soft/LastWave.

041105-10



