
PHYSICAL REVIEW E, VOLUME 63, 041105
Multifractal characterization of stochastic resonance
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We use a multifractal formalism to study the effect of stochastic resonance in a noisy bistable system driven
by various input signals. To characterize the response of a stochastic bistable system we introduce a new
measure based on the calculation of a singularity spectrum for a return time sequence. We use wavelet
transform modulus maxima method for the singularity spectrum computations. It is shown that the degree of
multifractality defined as a width of singularity spectrum can be successfully used as a measure of complexity
both in the case of periodic and aperiodic~stochastic or chaotic! input signals. We show that in the case of
periodic driving force, singularity spectrum can change its structure qualitatively becoming monofractal in the
regime of stochastic synchronization. This fact allows us to consider the degree of multifractality as a new
measure of stochastic synchronization also. Moreover, our calculations have shown that the effect of stochastic
resonance can be catched by this measure even from a very short return time sequence. We use also the
proposed approach to characterize the noise-enhanced dynamics of a coupled stochastic neurons model.
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I. INTRODUCTION

It is well known that noise is present inevitably in all re
processes. The reckoning of its influence is very import
for a deeper understanding of the dynamics of real syste
Stochastic resonance~SR! discovered by Benziet al. and
Nicolis et al. @1# during the study of the Ice Ages is one
the bright examples of a nontrivial noise action on a non
ear system. As a model of climate dynamics they propose
consider a bistable system simultaneously driven by no
and a periodic signal. It was shown that tuning the no
level, an enhancement of a bistable system’s response t
periodic force becomes possible. Beginning from the l
1980s, a wealth of theoretical and experimental papers
lowed, extending the notion of SR~for extensive reviews,
see Refs.@2–4#! and discovering new applications in diffe
ent fields of sciences. There are a few different approache
quantitative description of stochastic resonance depen
on the amplitude and character of an input signal which m
be periodic, chaotic or even stochastic. Originally, the
hancement of a weak periodic input signal was character
by the response amplitude at the frequency of periodic
nal. Fauve and Heslot@5# and McNamara, Wiesenfeld, an
Roy @6# suggested to use the signal-to-noise ratio~SNR! as a
quantitative measure of SR. Both quantities, the amplit
and the SNR, undergo a resonance-like curve as a functio
noise intensity. Spectrum power amplification defined
@2,7# as the ratio of periodic components in output and in
power spectrums demonstrates similar behavior takin
maximal value at an optimal noise level.

Other measures based on the residence-time distribu
were introduced for description of SR in@8,9#. In this case
the main object of considerations is the structure of the m
tioned distribution that contains a series of peaks at the
multiples of the half-period of driving. All of them go
through maxima as a function of the noise strength@9#. Gam-
maitoni et al. introduced the area under the peak of t
residence-time distribution at the half-period of driving as
1063-651X/2001/63~4!/041105~10!/$20.00 63 0411
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measure of SR@10#. Sometime later, a fully systemati
theory for the residence-time distribution functions was d
veloped by Choi, Fox, and Jung@11#. They showed that to
characterize correctly SR based on the residence-time d
bution it is necessary to find the difference between
residence-time distribution in the presence of the modula
and the residence-time distribution in the absence of
modulation at the half-period of the external force. In@12#
the receiver operating characteristic was used for quantita
characterization of a response of coupled overdamped n
linear dynamic elements driven by a weak sinusoidal sig
embedded in Gaussian white noise. This approach
complemented and generalized in@13# where SR was de-
scribed in terms of maximization of information-theoret
distance measures between probability distributions of
output variable.

Evidently, the measures mentioned above can be use
the case where the input signal has a clear distinguish
peak in its power spectrum. To characterize a response
noisy nonlinear system on an aperiodic driving force it
necessary to use other measures. In order to estimate
response of a noisy excitable~or bistable! system to a weak
aperiodic signal Collinset al. @14# introduced the input-
output cross-correlation measures and a measure of tra
formation quantifying the rate of information transfer fro
stimulus to response. They showed, in particular, that
rate of information transfer between system output and in
is optimized by noise and coined the term aperiodic stoch
tic resonance to describe this phenomenon. The coher
function was used in@15# to characterize the response of
bistable system to a weak stochastic input. It was calcula
analytically in the framework of the linear response theo
~LRT! that has been successfully applied to SR and rela
phenomena@2,16#.

From the practical point of view, it is very important t
have the measures calculated from a sequence of the
intervals characterizing the dynamics of an object un
study. Two examples of such sequences, which may be m
©2001 The American Physical Society05-1
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popular at present, are interbeat interval time series fr
cardiophysiology and neurons spike trains from neuro
namics. The statistical analysis of heartbeat dynamics h
shown that the use of approaches basing on wavelet or
bert transform~or their dual use! has a number of benefits i
comparison with the traditional ones such as power spect
and correlation analysis@17#. It allows to analyze the infor-
mation stored in the Fourier phases of a signal under st
which is crucial for determination of nonlinear character
tics. As was recently discovered by Ivanovet al. @18#, the
human heartbeat dynamics possesses the multifractal pro
ties. They used the wavelet-based approach develope
@19–25# to the analysis of complex non-stationary time s
ries. It has been shown that a heartbeat sequence of a he
subject has a multifractal scaling, whereas the data from s
jects with a pathological condition demonstrate a loss
multifractality. Moreover, authors demonstrated an expl
relation between the nonlinear features~represented by the
Fourier phase interactions! and the multifractality of healthy
cardiac dynamics. The efficiency of their approach based
the time-frequency localization properties of wavelets allo
ing to analyze the non-stationarities in time series.

It is reasonable to try to use the same approach for
quantitative characterization of SR when a sequence u
study is defeated by the concerted action of an external
nal and of a random force. In this case, an input signal~pe-
riodic or aperiodic! is the source of non-stationarity in a re
sponse which can be analyzed by means of the wave
based algorithm mentioned above. From this point of view
is naturally to expect that the use of the multifractal form
ism will allow us to introduce a new universal measure qu
tifying SR for an arbitrary external signal.

The main goal of the present study is the description
SR from the multifractal analysis point of view. Basicall
we treat as a model a bistable system simultaneously dr
by the white noise and an input signal. To characterize
scaling properties of a return time sequence we use a s
trum of local Hölder exponents calculated by means of t
wavelet transform modulus-maxima~WTMM ! method. For
this purpose, we first give some necessary definitions
illustrate the procedure of singularity spectrum calculation
Sec. II. Section III deals with the multifractal analysis of t
stochastic bistable system response for different kinds of
put signals. In this section, we introduce a new measure
quantitative description of SR and stochastic synchron
tion. We also test its ability to catch SR for different lengt
of a return time sequence. In Sec. IV we apply mention
approach to the study of aperiodic stochastic resonance
coherence resonance in an unidirectionally coupled neu
model. In Sec. V we summarize our results and discuss
advantages of our measure in comparison with traditio
measures.

II. SINGULARITY SPECTRUM AND WAVELET-
TRANSFORM MODULUS-MAXIMA METHOD

It is well known that stochastic signals can be conditio
ally divided into two different classes. The first one includ
the homogeneous signals characterizing by a single gl
04110
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Hurst exponent and having the same scaling properties a
time intervals. The second one includes the multifractal s
nals to describe the scaling properties of which it is nec
sary to use many local Hurst exponents~or Hölder expo-
nents! quantifying the local singular behavior and loc
scaling in time series. According to the definition@25#, the
Hölder exponenth(x0) of a functionf at the pointx0 is the
greatesth so that f is Lipschitz at x0, i.e., there exists a
constantC and a polynomialPn(x) of ordern so that for all
x in a neigborhood ofx0 we have

u f ~x!2Pn~x2x0!u<Cux2x0uh.

In fact, it measures the degree of irregularity off at the point
x0. The singularity spectrumD(h) of the signal can be de
fined as the function that gives for a fixedh, the Hausdorff
dimension of the set of pointsx where the exponenth(x) is
equal toh.

As was mentioned above, to determine the whole sin
larity spectrumD(h) from an experimental signal it is nec
essary to use the approach based on the wavelet trans
~WT!, which permits an analysis both in physical space a
in scale space. The WT of the functionf is defined as

Tc~b,a!5
1

aE2`

1`

cS x2b

a D f ~x!dx, ~1!

wherec is the analyzing wavelet,aPR1 is a scale param-
eter andbPR is a space parameter. The analyzing wavelec
is generally chosen to be well localized in both space a
frequency domain. A class of widely used real-valued a
lyzing wavelets which satisfies the above condition is giv
by the Gaussian function and its derivatives. As was pro
by Mallat and Hwang@21# the WT modulus maxima~local
maxima of uTc(x,a)u at a given scalea) detect all the sin-
gularities of a signal under study. The skeleton from t
modulus maxima lines contains all the information about
hierarchical distribution of singularities in the signal. Th
WTMM method consists in taking advantage of the spa
scale partitioning given by this skeleton to define a partit
function which scales, in the limita→01, in the following
way @20,23,24#:

Z~q,a!5 (
$xi (a)% i

uTc~xi~a!,a!uq;at(q), ~2!

where$xi(a)% i are the WT modulus maxima andqPR. Ac-
cording to the theorem proved in@24#, D(h), the singularity
spectrum of the functionf, is obtained by Legendre transfo
mation of the functiont(q) defined in~2!

D~h!5min
q

~qh2t~q!!.

The variablesh andD(h) play the same role as the energ
and entropy in the thermodynamics, whereas instead of
inverse of temperature and free energy we haveq andt(q)
@23,25#. From a numerical point of view, it is more conve
niently to calculate at first the scaling exponents:
5-2
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FIG. 1. ~a! The path of a Brownian particle;~b! the modulus-maxima skeleton of the random signal pictured in~a!; ~c! the dependence
t(q); ~d! the singularity spectrum. The first derivative of the Gaussian function was used as the analyzing wavelet.
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h~q!5 lim
a→0

1

ln a (
$xi (a)% i

T̃c~q;xi~a!,a!lnuTc~xi~a!,a!u

and

D~h~q!!5 lim
a→0

1

ln a (
$xi (a)% i

T̃c~q;xi~a!,a!ln T̃c~q;xi~a!,a!,

where T̃c(q;xi(a),a)5uTc(xi ,a)uq/(xi
uTc(xi ,a)uq. Fur-

thermore, we extract the set of Ho¨lder exponents and corre
sponding singularity spectrumD(h) from log-log plots of
h(q) andD(h(q)) @22#.

As a simple example, we calculatedt(q) and D(h) for
the ordinary Brownian motion which is characterized by t
single global Hurst’s exponentH51/2. Fig. 1 demonstrate
04110
clearly the homogeneous scaling for the ordinary Brown
motion. For more detailed information about calculation
procedure and additional references on freely distribu
software, see@26#.

III. MULTIFRACTAL APPROACH TO STOCHASTIC
RESONANCE

We treat for our study the overdamped bistable oscilla
which is governed in canonical units@2# by the following
stochastic differential equation~SDE!:

ẋ5x2x31A2Qj~ t !1y~ t !, ~3!

wherej(t) is the white Gaussian noise with the correlati
function ^j(t)j(t8)&5d(t2t8) and^j(t)&50, y(t) is an in-
put signal.
5-3
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In the following subsections, we present the results
numerical simulations of Eq.~3! for different kinds of input
signal. To characterize SR from the multifractal formalis
point of view we will process the sequences of the ret
times to the one of the potential wells@2# normalized on a
characteristic time scale of an external driving force.

A. Periodic input signal

Let us start from the more simple and well studied case
periodic external driving wheny(t)5A sin(Vt1f). The am-
plitude of the input signal is assumed to be small, i.e.,
signal alone cannot switch the system from one state to
other in the absence of noise. For the low-frequency perio
modulation considered in this paper, this means

A<A05
2

3A3
. ~4!

As is well known, the study of SR can be conditionally sep
rated on the two cases. The first one deals with the situa
of a weak input signal when the amplitude of periodic dr
ing is very small in comparison with a potential barrier a
can be considered in the framework of the LRT@15,16#. The
second one is beyond the limits of LRT and correspond
an amplitude of a subthreshold input signal comparable w
a barrier. In the last case, the dynamics of a bistable sys
is characterized by a high degree of coherence between
switching process and input signal@27#. It can be correctly
described in terms of the phase synchronization theory b
for periodic @28#, chaotic@29#, and stochastic input signal
@30#. Moreover, as was shown in@31#, SR takes the form of
the noise-induced order in this case. Such informati
theoretical measures as the source entropy and the dyna
entropy display a minimum at an optimal noise intensity.
order to describe quantitatively these different situatio
from the multifractal formalism point of view, we calculate
singularity spectrums for different values of the driving a
plitude taking as the signal under study a sequence of
return times normalized on the driving period. Each
quence contained 10 000 points. The results of calculat
have shown the following. Singularity spectrum of the r
sponse has a bell shape form both in the presence and i
absence of the external periodic driving. That caused b
nonlinearity of the bistable system’s response to the exte
driving force which manifests itself in the presence of t
different modes and in their interaction. As seen from Fig
the tuning of noise level in the system of Eq.~3! leads to the
changes in singularity spectrum both for weak and for stro
enough driving signals. The width of the singularity spe
trum takes its minimal value for an optimal noise intensity
remains finite in the case of a weak periodic driving forc
whereas in the regime of stochastic synchronization singu
ity spectrum qualitatively changes its form shrinking to
single point. The return times fluctuate around the driv
period in the regime of noise-enhanced phase locking
large bursts are seldom happen@Fig. 2~c!#, while for the val-
ues of noise intensities lying outside of synchronization
gion the respectively large fluctuations dominate@Fig. 2~e!#.
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It is natural to consider the degree of multifractalityb de-
fined as the difference between the maximal and minim
Hölder exponents belonging to the one and the same sin
larity spectrum as a new measure for SR and stochastic
chronization. As clearly seen from Fig. 3, the dependence
b on the noise intensity is characterized by the presence
minimum both for weak and for sufficiently strong inpu
signals. In the regime of stochastic synchronization,b equals
to zero that corresponds to a single point singularity sp
trum @see Fig. 2~d!#. In this case, the scaling features of th
return time sequence under study is characterized by
single scaling exponent that caused by the linearization
the response in the regime of switchings synchronizati
Indeed, the interaction between different modes in respo
is suppressed in synchronous regime, because the switch
in the system~3! are in phase with the input signal. Th
mode corresponding to the periodic input signal domina
and suppresses all others. In turn, it leads to simplification
the singularity spectrum that reflects the absence of inte
tions between Fourier phases in response. It is necessa
emphasize here, that we understand stochastic synchro
tion as instantaneous matching of the input/output pha
which is observed in a finite region on the parameter pla
‘‘noise intensity—amplitude of periodic force.’’ Tradition
ally, synchronization in noisy nonlinear oscillatory system
is estimated quantitatively by means of effective diffusi
constant which characterizes a velocity of spreading of
initial phase difference distribution@32#. Recently, this clas-
sical approach to synchronization was successfully used
quantitative description of the noise-enhanced phase co
ence which takes place in stochastic bistable system dr
by a subthreshold external signal@28–30#. The effective dif-
fusion constant demonstrates a minimum decreasing up
very small value in the region of synchronization. The abo
introduced wavelet-based measure demonstrates exactl
same behavior taking the zero value in the phase-lock
regime that allows us to consider it as the measure of
chastic synchronization as well. Usingb as the measure o
stochastic synchronization, it is possible to construct the
gion of synchronization on the parameter plane ‘‘no
intensity–amplitude of periodic force’’~see Fig. 4!. Inside of
this region singularity spectrum of the response rema
monofractal that once more time demonstrates the simp
cation of the response in the regime of synchronization. S
chronization region has a tongue-like form and nearly co
cides with the similar one constructed by means of
effective diffusion constant used in@28–30#. It should be
noted that the degree of multifractality does not relate
rectly with effective diffusion constant. The multifractal ap
proach based on the analysis of the scaling features of
temporal sequence, whereas the effective diffusion cons
is the value characterizing a probability distribution of t
input/output instantaneous phase difference. Our numer
studies also have shown thatb demonstrates a monotonou
dependence on the driving frequency.

The length of the analyzed signals becomes the impor
parameter if they obtained in real experiments with live o
jects. Evidently, to estimate the possibility to use the abo
proposed measure in real situations, we need to test its ab
5-4
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FIG. 2. ~a! D(h) in the case of the weak periodic input signalA50.081,V50.004 for different values of noise intensityQ; ~b! t(q)
corresponding to the singularity spectrums,D(h), in ~a! for different values of noise intensity; the sequences of the return times norma
on the external force period and corresponding singularity spectrums in the case ofA50.286,V50.004 for Q50.040 @~c! and ~d!# and
Q50.012@~e! and ~f!#; The Gaussian function was used as the analyzing wavelet.
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to catch SR for different lengths of the return time s
quences. The results of our computations have been sh
that the degree of multifractality takes the possibility to o
serve SR both for long and for sufficiently short return tim
sequences. As seen from Fig. 5,b calculated over the shor
return time sequences containing only 1000 points dem
strates nearly the same behavior as in the case of the
sequences.
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Thus, the width of singularity spectrum manifests itself
the general and universal characteristic for description of
because it works very well in a wide range of values of t
driving amplitude and frequency. Its calculation allows us
get the information about the scaling properties of the f
quency fluctuations of a nonlinear system response
doesn’t requires any information about input signal. Mo
over, that new characteristic allows one to analyze eff
5-5
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ALEXANDER SILCHENKO AND CHIN-KUN HU PHYSICAL REVIEW E 63 041105
tively a response even in the case of short return time
quences that has an especial meaning for poss
applications.

The obtained results are in a good agreement with
behavior of the spectral power amplificationh firstly used
for quantitative characterization of SR in@2,7#. It demon-
strates a maximum the absolute value of which is increa
with the decrease of the input driving amplitude~see Fig. 6!.
The values of noise intensity maximizingh nearly coincide
with the ones minimizing the degree of multifractality. Th
growth of the driving amplitude leads to the shift of minim
values ofb to lower noise level as well as for spectral pow
amplification.

FIG. 3. Degree of multifractality vs noise intensity for differe
values of the periodic force amplitude:A50 ~stars!, A50.081~tri-
angles!, A50.152~diamonds!, A50.268~circles!. The frequency of
external force has the same value as in Fig. 2. The Gaussian
tion was used as the analyzing wavelet.

FIG. 4. Regions of stochastic synchronization constructed
means of effective diffusion constant~dashed line! and of multifrac-
tality degree ~solid line!. Driving frequency isV50.004. The
Gaussian function was used as the analyzing wavelet.
04110
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B. Stochastic input signal

From the practical application point of view, it is mor
interesting the situation when an input signal has a comp
structure. SR for the input signals with fluctuating amplitu
and phase was considered in@33,34#. In order to model the
situation when the external signal is close to periodic o
but has a finite width of the spectral line Neiman a
Schimansky-Geier@34# proposed to consider the harmon
noise as the input signal. Using the cumulant analysis
computer simulations they showed that the effect of SR ta
place for harmonic noise as well and the width of the spec
line of the input signal at the output power spectrum can
decreased via SR.

c-

y

FIG. 5. Degree of multifractality vs noise intensity calculat
for indicated values of the length of the return time sequence.
amplitude and frequency of the driving force areA50.12,
V50.004.

FIG. 6. Spectral power amplification vs noise intensity for d
ferent values of the driving amplitude. Driving frequency
V50.004.
5-6
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Harmonic noisey(t) is defined by the following two-
dimensional SDE@33,34#:

ẏ5s, ṡ52Gs2V2y1A2«Gz~ t !, ~5!

where z(t) is the zero-mean Gaussian noise w
^z(t)z(t8)&5d(t2t8). It is necessary to note, that Gaussi
noisez(t) is statistically independent from the noisej(t) in
~3!. Equation~5! determines the two-dimensional Ornstei
Uhlenbek processy(t),s(t) with the power spectrum

Syy~v!5
G«

v2G21~v22V2!2
, ~6!

which for V2.G2/4 has a peak at the frequencyvp

5AV22G2/2 with the width

DV5Avp
21Gv12Avp

22Gv1, ~7!

where v15AV22G2/4. The mean square displacemen
^y2&5«/V2,^s2&5«,^ys&50. The increase of the paramet
G causes the widening of the spectral line@34#. We used
harmonic noise as the input signal in~3! to carry out the
multifractal analysis of SR in the case of aperiodic drivi
force. As in the previous subsection, we analyzed the re
time sequences containing the same amount of points as
fore and normalized on the periodT52p/V. To compare
our results with those obtained previously, we choose
same values of parameters for numerical simulations a
@34#. The results of our computations are presented in Fig
The difference between the maximal and minimal Ho¨lder
exponents takes its minimal value for an optimal noise int
sity as in the case of periodic driving. The obtained resu
are in good agreement with the results of@34#. The degree of
multifractality behaves as the relative width of the outp
spectral line used in@34# demonstrating the minimum at

FIG. 7. Degree of multifractality of the bistable system~3! re-
sponse to the harmonic noise vs noise intensity for the diffe
values of the dissipation parameter in~5!. Other parameters areV
50.1,«50.025.
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close value of the noise intensity. The decrease ofG in ~5!
leads to the regularization of the input signal that makes t
minimum in b(D) more pronounced.

C. Chaotic input signal

Now, let us take as the input signal in~3! the slowly
varying subthreshold chaotic signal generated by the Lore
system which is governed by the following ordinary differ
ential equations:

ẏ1510~y22y1!n,

ẏ25~28y12y22y1y3!n, ~8!

ẏ35~y1y228/3y3!n,

wheren is the small rationing constant slowing chaotic os
cillations. Lorenz attractor existing in the phase space of t
system has a thin multifractal structure@35#. The power spec-
trum of chaotic oscillations calculated fory1,2-variables does
not contain any sharp peaks in this case. The input signal
a form of random process of switchings between two me
stable states@see Fig. 8~a!#. It is reasonable to calculate the

nt

FIG. 8. The input~a! and output~b! signals in the regime of
stochastic synchronization for the case of chaotic driving sign
generated by the Lorenz signal. The parameters arek50.0188,Q
50.03,n50.005.
5-7
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ALEXANDER SILCHENKO AND CHIN-KUN HU PHYSICAL REVIEW E 63 041105
return time sequences for the input and output signals
then to try to estimate the distortion of the signal in stoch
tic resonator using singularity spectrum. We used the v
ablek•y1(t) from the system of Eq.~8! as the input signal in
our simulations, herek is a small positive rationing constan
As follows from the results presented in Fig. 9~a!, singularity
spectrums of the input and output signals become more c
to each other for some optimal noise level. Moreover,
some values of the parameterk the noise-enhanced phas
coherence between chaotic signal and response is obse
@29#. In this case, the switchings in the input signal are
phase with the switchings in stochastic bistable system~see
Fig. 8!. Singularity spectrums of the input signal and of t
response are coincide@see Fig. 9~b!# in the regime of phase
locking that means the passing of chaotic signal through
stochastic resonator without any distortions. This is also
lustrated by the dependence of the singularity spectru
width on the noise intensity for bistable system response
is presented in Fig. 10. For some optimal noise intensityb
takes its minimal value closing to the value corresponding
the width of the input signal’s singularity spectrum. As w
mentioned above, the input and output singularity spectru
coincide in the regime of stochastic synchronization t

FIG. 9. Singularity spectra for different values of noise intens
Q and of the rationing constant:~a! k50.01, ~b! k50.0188. The
Gaussian function was used as the analyzing wavelet.
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causes the coincidence ofb with the multifractality degree of
the external chaotic signal in some finite range of no
intensities.

IV. MULTIFRACTAL ANALYSIS OF NEURON
SPIKE TRAINS

One of the reason for unremitting interest in SR is t
possibility to model on its base different cooperative effe
and the process of the information transfer in various b
logical sensory systems operating in natural noisy envir
ment. At present, there are a lot of experimental res
showing that sensory neurons of different live organisms
able to demonstrate SR@4,36#. In order to estimate the en
hancement of a response, the signal-to-noise ratio or dif
ent cross-correlation measures are usually used@36,14#. It is
very interesting to use the above multifractal approach
analyze the spike trains generated by a stochastic neur
model.

We took as a model the Fitzhugh-Nagumo system@37#
operating in excitable regime and driven by a mixture of t
internal noise and a subthreshold stochastic spike train g
erated by another similar system detuned from the first
on a control parameter. The unidirectionally coupled neu
systems are described by the following stochastic differen
equations:

m ẋ15x12
x1

3

3
2y1,

ẏ15x11a11kx21A2Q1j1~ t !, ~9!

m ẋ25x22
x2

3

3
2y2 ,

ẏ25x21a21A2Q2j2~ t !,

FIG. 10. Degree of multifractality vs noise intensity for the d
ferent values of chaotic signal amplitude. The width of the sing
larity spectrum of the input signal is represented by the dashed
The Gaussian function was used as the analyzing wavelet.
5-8
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where a1 (Q1) and a2 (Q2) are, respectively, the contro
parameters~noise intensities! of the subsystems (x1 ,y1) and
(x2 ,y2), j1, andj2 are the statistically independent Gauss
white noise with the zero mean,k is a small rationing con-
stant as before andm!1 is a small parameter allowing on
to separate all motions in the fast and slow ones. The va
of control parameters and noise intensities in subsystems
different and varied independently from each other. Thus
can consider the system of Eq.~9! as a model of a single
neuron embedded in a network and driven by both the in
nal noise and summed output of the neighboring neurons
can be modeled as a stochastic spike train. Interspike in
vals ~ISI! widely used in neuroscience as the typical neu
signals will play the role of signals under study in our co
sideration. The input stochastic spike train generated by
second neuron is characterized by a continuous singula
spectrum having a finite width as well as the chaotic in
signal from the Lorenz system. The calculated widths of
singularity spectrum for the ISI generated by the first neu
are shown in Fig. 11. It can be seen that the dependenceb
on the internal noise intensity is characterized by two diff
ent minimums corresponding to two different effects taki
place in the system~9! for small and large internal nois
level, respectively. The first minimum appearing at the co
paratively small noise intensity corresponds to the effec
aperiodic stochastic resonance when a weak internal n
enhances the response of the neuron model optimizing
transmission of the input signal. As clearly seen from F
11, the width of singularity spectrum calculated on the fi
neuron ISI is very close to the input one for some optim
values of noise level. Further increase of noise inten
makes singularity spectrum of response more narrow
can be considered as a manifestation of stochastic reson
without input signal@38# called coherence resonance in@39#.

FIG. 11. Degree of multifractality of the first neuron response
Eq. ~9! vs internal noise intensityQ1. Parameters:m50.01, a1

51.05,a251.07,Q250.02,k50.025. The width of the input sig
nal singularity spectrum is labeled by the dashed line. The Gaus
function was used as the analyzing wavelet.
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Indeed, in the case of sufficiently large noise intensity n
ron already cannot distinguish the structure of the noisy in
signal. It operates as an oscillator whose time scale is c
trolled by noise. For some optimal value of the internal no
intensityQ1 oscillations of the first neuron become close
the periodic one that is the essence of coherence reson
@39#. At the moment when coherence resonance is obse
b takes its second deeper minimum reflecting the no
enhanced ordering of ISI.

V. CONCLUSIONS

We have studied the phenomenon of stochastic reson
in terms of the multifractal formalism revisited with wavele
@25#. We observed that for some optimal noise intensity
degree of multifractality of the response, defined as a wi
of the singularity spectrum, takes its minimal value. Mor
over, the qualitative change of its structure takes place in
regime of stochastic synchronization. In the region of t
noise-enhanced phase locking it shrinks to the single p
with zero Hölder exponent. We have shown that the width
the singularity spectrum calculated over the return time
quence can be effectively used as the measure character
the response of a noisy nonlinear system in a wide rang
the driving amplitudes and frequencies. As follows from o
numerical results, this measure can be successfully used
for periodic and aperiodic~stochastic or chaotic! driving sig-
nals. Moreover, it has allowed us to estimate the degree
coherence for the unidirectionally coupled stochastic neur
model operating in excitable regime. By using the introduc
measure, we successfully diagnose both aperiodic stoch
resonance and coherence resonance which take place i
model under study for the small and large noise intensit
respectively.

The proposed approach has a number of benefits in c
parison with the traditionally used measures such as S
SPA, residence time distributions, coherence function
others. These measures use the averaging procedure for
calculation that leads to the loss of information about no
linear interaction between Fourier phases in response.
information is very important both for deeper understand
of the essence of SR and for more sensitive diagnostic of
in full-scale experiments. The multifractal formalism bas
on wavelet calculations allows one to study the scaling f
tures of frequency fluctuations of the response. It catches
even weak nonstationarities in a return times sequence u
study that makes it a very powerful tool for diagnostic of S
and stochastic synchronization. The introduced meas
demonstrates the behavior which in a very good agreem
with the behavior of traditional quantitative characteristics
SR. It is universal in relation to the kind of the input sign
and able to catch noise-induced effects, even from very s
time series. Later has the special importance for the anal
of real signals.

The presented approach to the study of scaling feature
motion in stochastic systems may be very fruitful also in t
case of the Brownian motion in periodic potential under t
action of random forces. It will be the task of our futu
investigations.

an
5-9
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